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We consider a potential field in piecewise-nonhomogeneous media having a re- 

gular structure. The basic structure consists of a doubly-periodic system of groups 
of arbitrary heterogeneous anisotropic inclusions. The heterogeneous inclusions 

present in each of these groups possess the same.periodicity as the basic structure; 
they thus form a substructure. The problem of uniquely determining the field in 

this structure reduces to a determination of the solutions of a second order homo- 
geneous elliptic equation in each of the component domains, the solutions being 

required to satisfy coupling conditions on the interfaces of the media and also 
some additional relationships. This boundary-value problem reduces to a system 
of regular integral equations, which we prove to be solvable. Questions arise in 
connection with the modelling of piecewise-nonhomogeneous anisotropic regu- 

lar structures of a general type by means of homogeneous anisotropic media. As 
applications, we consider certain problems in hydromechanics and in the theory 
of anisotropic reinforced materials. 

1. Formulation of the baric problem, Let o,and O, (Imo, = 0, 
Imo, / o1 > 0) be the fundamental periods of the piecewise-nonhomogeneous medium, 
dividing it into a set of congruent fundamental cells ITI,, (for example, into a set of 

periodic parallelograms). Since we assume the structure of all congruent cells to be 
identical, it is sufficient to describe the structure of cell &,. The basic structure of 
the cell no0 consists of a group of distinct heterogeneous anisotropic inclusions Dj, 
bounded by the closed curves Lj (j = 1,2, . . . , r). The nonuniformity of each of the 
domains Dj gives rise to a cell substructure, i. e. the presence in each of these domains 
of its own anisotropic inclusions djq, bounded by the closed curves lj Q \J (’ = 1, 2, 
. . . . r; q =l.%, . . . . rj). We assume that the curves Lj and lj, are simple smooth 
mutually disjunct Liapunov curves. 

Let 

L = (j I,, 
i=l 

dj = (“i djq, 
&1 

Bj = Dj \ dj 

and let D be the unbounded domain occupaied by the basic homogeneous anisotropic 
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medium (see Fig. 1). 
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Fig. 1 

Consider the scalar field in each of the domains D, Bj and di, , described therein 

by an equation of elliptic type 

I(,, (4 WrS (2) + 2K,, (4& (4 $- K,, (2) WV,(Z) = 0 (1.1) 

i 

K 3>3 9 = -E D u (z), ZED 
“2, (z) s K&a, z ‘5 Bj, CV (7) =I Uj (Z), 

i 

2 C Bj 

K$, 2 Cdj? Ujq (z), z E dj, 

K,I (2) Km (4 - 111,’ (2) ; 0, a, /?I = 1,3, K,, (z) > 0. h& (z) > o 

Here k’,,, Khp and Kf$, are constants defining the physicotechnical properties of 
the anisotropic components of the structure. We define the flow q of the field at each 

point of the domain occupied by some component of the medium by the expression 

q = Q1 (4 + iq, (4 = - [K,, (4W, - K,, b)W,I - (1.2) 
dK,,(z) W, -t K,, (z)W,l 

K,, (4 = K,, (2) 

Here qv (z) assumes the values qv, qvj and qvIQ in the domains D, Bj and dj4 , re- 
spectively. 

We assume that the media occupying the congruent domains of the structme are 

identical in their physicotechnical properties ; we assume also that for each z E D 

the following equations hold (p., is the normal component of the vector q) 
Z-tW 

s 
q,,ds = - r/z Im I!., = const, A = KllKg2 - K12’, Y-l,2 (1.3) 

z 

Under these conditions the field in the unbounded piecewise-nonhomogeneous medium 
is completely determined by the field in the fundamental cell structure. Therefore we 

formulate the basic boundary-value problem in the following way. 
In each of the domains D, Bj and dj, we construct regular solutions of Eq. (1. l), 

satisfying the supplementary conditions (1.3) and the following boundary conditions on 
the interface of the medium components : 



Theory of a two-dimensional potential field 321 

U (4 = Uj (t) + gj (t>, Pn (t) = qr! (t), t E Lj, i=1 
3 ‘7 ’ , ’ (1e4) 

ICj (t> = Ujp (t) + gjp (t>, 4d (t> = QnjP (t), t E ljpt 

p = 1,2, . ) r: 

The functions gj (t) and gj, (t) are arbitrary Holder-continuous functions specified on 

Lj and lj, , respectively. 
We transform the boundary-value problem thus described to a more suitable form. 

With this in mind, we express the general solution of Eq. (1.1) in terms of arbitrary ana- 

lytic functions. We have 

u = Recp (z,J. uj =Reqj(zj), uj4 = Re Cpjq (zjq) 0.5) 

z0 =X + pay, Zj =X + YjZJ, zjq zx + Pjq Y 

The periodicity of the structure is maintained in the z,, plane, wherein the fundamental 

periods (I+~ and OJ?~ now have the form 

($0 = @rr %O = Reo, + l,toIrno, = (1.6) 
h _1- u,H + if5,H = h, + iH, 

h = Reo2, H = Im CO,, 11, = Rem,,, H, = Im osO 

Given pre-images in the z plane, consisting of points, curves, and regions, have corres- 

ponding images under an affine mapping in the zO, zj and zfs (i = 1, 2, . .., r; 
q = 1, 2, . . . . rj) planes; pre-images in the z plane corresponding to images in these 

latter planes will be identified by zero, prime, and double-prime superscripts, respectively. 
We now calculate the flow 0 crossing an arbitrary curve joining points A and B in 

D. Taking the relationsJl.5) and (1.2) into account, we obtain 

Q = i qnds = [ (q,dy - q2dx) = - VK Im ‘p (zo) 1:: (1.7) 

This latter relation then enables us to write the supplementary relations (1.3) in the form 

Im {‘p (so + pro> - ‘p (so)) = Im fir (1.8) 

Im {‘p (z, + qo) - cp (zo)j = Im Q2, 

From Eqs. (1.8) it follows that the function TV, (z,) , regular in D” , is quasi-periodicwith 
respect to the periods or0 and o,,. The boundary conditions (1.4) can be written in the 
following equivalent form when (1.7) is taken into account: 

Cp CtO) zz Ej’Pj (tj) + &j” ‘pj (tj) + gj (t) 
t E Lj, to E Lj”, tj E Lj’ 

(oj ctj) = &jq’%jq Ctjq) + &jq"Tjq (tjq) + 

t E ljq, tj E ljq’, tjq E lj,,” 

(1.9) 

gjq (4 
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Ej = f (1 + hj), &j* = A& (1 - hj), Fj* = f (1 + kjq), E,j,,* = + (1 - hj,,). 

The constants of integration, which must appear in the right-hand sides of (1.9) are in- 

cluded in the unknown functions ‘pi and Cpjq. We have thus arrived at the following 

boundary-value problem. 

Determine a function q (2”) , quasi-periodic in Do , and functions vj (Zj) and 

cfjq (~j~) , regular in the domains Bj’ and dj,,” , respectively, which satisfy the .bound- 

ary conditions (1. 9) and the supplementary conditions (1. 8). It is, of course, to be under- 

stood that the conditions for (p (z,) to be quasi-periodic are satisfied automatically ow- 

ing to the special representation chosen for the function (p (na). 

We set 

to E + (1 - i[lo) + + (1 _I- i&), ” -- +- (1 - ipn) + + (1 + ipo, -0 - 

tEL, “El) 

tj = + (1 - ic!j) _I- + (1 + ipj), Zj z + (1 - ipj) i- -&(I + i[Ij) 

tELj+lj, = S Hj 

fjq = + (I - tPj,I) + + (I t- ipjq), Zjq = + (1 - ipj,l) -t ; (1 -I- ic’j,,) 

t E ljq, z E djq 

t, E L’, tj E Lj’ f lj’. tj,l EE lj,,” 

I’ (t) c {Pj Ct), t E Lj}, E (t) E {Ej t E Lj}, fZ* (t) L {Ej*, t E Lj} 

Here 5 (z,) is the Weierstrass zeta function constructed on the periods ct~i~ and ozo, 

and A is a constant to be defined. The curves Zj,lV and ljr,’ are traversed clockwise 

in the integration while the curves L;’ and L.,” are traversed counterclockwise. The 

function 9 (z,), defined in (1. lo), is obviously quasi-periodic in u”. 

Substituting the increment of cp (z,) into (1.8) and solving the resulting equation for 

A, we obtain 
A =A,._tAo (1.11) 
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a = & \ (8 (t) P (t) - I* P(tf) dt,, So = cola Im @SO 
f .o 

Thus the formulation given by (1.10) defines a function cp (z,), which is quasi-periodic 
in Do and satisfies the supplementary conditions (1.8). The problem now reduces to 

determining the densities Pj (t) and Pjq (t) from the boundary conditions (1.9). 

2, Solution of the boundary-vrlus problem (1.9). If we passover 
to the limiting values in Eqs. (1.10) and substitute them into the boundary conditions 
(1.9) we obtain a system of Fredholm integral equations of the second kind in the un- 
known functions Yj and Pjq : 

The prime on the summation in the expression for A&j, means that the term corresond- 
ing to s = q must be omitted. If the system (2.1) is solvable, its solution yields the 
unknown functions (c, qj and Cpjq. 

3. Unfquanetr theorems. Let us assume that solutions of the boundary-value 
problem (1.9), (1.8) exist. 

Theorem 3.1. The following relationships hold between any two solutions of the 

boundary-value problem (1.9) cp(‘$+,), cpj(‘) (zj), c&~(” (sjq) and (~(~1 (z,), (p,(2) (zi), 
‘pj,1”’ (Zjq), each of which satisfies the supplementary conditions (1.8): 
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Cj== ReC+-$ImC, Cj, = Rc C + hj;j, ’ -1mC 
1 

To prove this theorem we note, first of all, that the “energy” equality holds for any 
arbitrary solution of Eq. (1.1) regular in the domain B , namely, 

li 
“~~,-~~,ph+ -& \ wq,ds (3.2) 
L! dB 

Here LB is the boundary of the domain B, qn is the normal component of the flow q, 
introduced in (1.2) ; the integration is taken in a counterclockwise direction. 

The Eq. (3.2) is derived by the usual transformations, analogous to those which lead 
to the Poisson’s integral formula of potential theory. In fact, when K,, = K,,, K,, = 
0, this equation becomes Poisson’s formula. 

If now we apply (3.2) to our multi-component structure, upon taking into account 

(1. l), (1.9) and (1.5) we obtain 

J= Ksz” “-p,,$ ‘dxdy+ a\ I 4 
a!/ 

(3.3) 

In (3.3) the contours Zj,r, Lj and I? (boundary of &) are traversed counterclockwise; 
Dp is an ( r + 1 )-connected domain with the boundary I? U L. 

Taking note of the relations (1.5) (1.7) and (1.8). by virtue of quasi-periodic property 

of ‘p (2s) , we obtain 

c 
uq,ds = (Re O2 Im Oi - Re Ot Jm 0,) f/3 (3.4) 

i! 

If we substitute Eq. (3.4) into the energy equality (3.2) and then apply relation (3.3) to 
the difference of two solutions of the boundary-value problem (1.9). wherein these solu- 
tions satisfy the condition (1.8), we obtain the result asserted in the theorem. The func- 

tions o”, ‘pj” and Cpjq’ can be interpreted as the solutions of the homogeneous boundary- 
value problem (1.9) corresponding to 

gj (t) s 09 gjq (t) s 0, Im Q2, = Im 52, = 0 

Theorem 3. 2. Let Xi (t) and Uj (t) be the boundary values of the functions 

Xi 6%) and oj (zJ), g 1 re u ar, respectively, in a finite domain of the zO plane bounded 

by the curve Lj’ and in the complement of Dj’ taken with respect to the extended Zj 

plane. If Uj (Zj) = 0 ([Zj 1 -I), in the neighborhood of the point at infinity, then the 
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boundary-value problem 

‘xj (t) = Ejcij (t) -f Ej*Sj, ' ~ 'j, i -li 1,2,. . f , r 

has only the trivial solution. 
To prove this theorem, we apply (3.2) to the two-component domain bounded by a 

circle CR of sufficiently large radius. We have 

p()‘h.,aZ;S 1 X'(Z*) j?ffXdy + /3j2k‘:zjSS /6jr(Zj)~adiZZdZJ = (3.5) 

nj tin 

-‘ s em Re oj (~j} CCC, 
“R 

x;f L=-c A& 

Here DR is the doubly-connected domain with boundary .Lj u CR. We then obtain 
the desired result by letting M become infinite, 

4, Solvability of the syitsm (2.1). We prove now that the systemof 
integral equations (2.1) is always solvable under the assumptions we have made on the 

boundary curves and the functions gj and gj,. To do this we consider the corresponding 
homogeneous system. It is obvious tnat Fj (r) =O and Fj, (r) = 0 if and only if 

Rj (x) =o, gjq (T) = 0% Im S& = Im 1;2, = 0 (4.3) 
j = 1, 2,. . .) I‘; q = 1, 2,. . . . rj 

Thus the homogeneous system corresponds to the homogene~~ bo~da~-value problem 

(1.9) with homogeneous supplemental conditions (1.8). 
We denote the solutions of the homogeneous system (2.1) by Pj” (t) and Pjp” (t). 

Functions and functionals corresponding to these solutions will also be labelled with a 

zero sub- or superscript. The uniqueness theorem (3.1) enables us to write 

{E (t) 1’0 (1) - E* (t) t”, (t)} 5 (to - 20) ‘&, -k 
Lo 

(4.2) 

Calculating the increments of the function 9’ (zO) in the first of the equations (4.2) for 
a passage from the point z to its congruent point z + o, (v = 1,2), we obtain 

-& s {E (2) PO (1) - c* (4 PO (a5 (to - 20) dto = c 
LO 

(4.3) 
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It follows from (4.3) that the function F (t) P, (t) - a* (t) P, (f) is the boundary 
value of certain functions regular in finite domains of the zO plane bounded by the con- 
tours Lp (i = 1, 2, . . . . r), Therefore the integral in Eq. (4.3) vanishes and, on the 
basis of (3. l), we obtain 

C = 0, Cj = 01 Cjq = 0, i=1,2,..., r; q -= 1, 2, . , rj (4.4) 

We now introduce the functions 

iXj (tf 7z cjpj” (t) - Ej*Px i5j (t) =: Pj” (t), t E. Lj, i = 1, 2, . . . , r (4.5) 

ixjq (t) ?Z EjqPjy’ (t) - &j**Pj, i3jp (t) y Pjq* (t) 
t E ‘jy7 q=iJ,...,‘; 

From (4.2) taking account of (4.4) and (4.5), we conclude that Xj (t) is the boundary 
value of the functions Xj (&,), which are regular in the finite domains bounded by the 

curves Ljv; Oj (t) is the boundary value of the functions oj (Zj). which are regular 
outside of Dj’ and vanish at infinity ; xj,l (t) is the boundary value of the functions 
Xjq (zj), which are regular in the finite domains bounded by the curves ljq’, and, final- 

ly, Ojq (t) is the boundary value of the functions oj, (Zjp), which are regular outside 
of the domains djg” and vanish at infinity. 

If we eliminate the functions Pp (t) and Pp10 (t), from (4.5), we obtain the system 
of independent boundary-value problems 

xj(t)=EjSj(t)+&j*3j(t), t"Lj, j=1,2 ,..,, r (4.6) 

Xjii (t) = Ej$jq (t) + Ejq*5j* (t), t E ‘jq> Q = 1,2* . . . , ‘j 

In the neighborh~ of the point at infinity the functions 0, (Zi) and Sj,T (zjci) decay no 
slower than 1 Zj-’ 1 and f Zj,,-l 1 , respectively. By virtue of Theorem 3.2 we have 

Gj (t) =LYZ Xj (t) = 0, Sjq (t) = Xjq (t) = 0, I’ z= 17 2, I ) r; g=I., 2, . . . , ~j (4.7) 

Hence on the basis of (4.5) we conclude that 

Pj” (t) = 0, Pj,,O (t) = 0, i L- 1, 2, . f . ) r; Q _: i, 2, . f 1 , ‘j (4. B) 

Thus the system of equations (2.1) always has a solution and this solution is unique. 
It is evident from the proof that, without making any major changes, we can compli- 

cate the structure of the fundamental cell even further by introducing substructures of 

much higher orders. By letting the periods become infinite, we obtain the solution of 
the boundary-value problem (4.5) for a multiply connected domain with a finite num- 

ber of components. 

6. Model of a regular field (of regular structure). Let us set 
gj(t) = 0, gjq (f) = 0. 

In each component of the medium there is a scalar field defined by the functions U, 

U,j and Ujq. The flow at each field point is given by expression (1.2) and the total BOW 

across an arc joining two congruent points is independent of z and is determined in (1.3). 
We introduce mean flows ( g1 ) and ( qz ) according to the formulas 

01~ (q3) = S q&s = JfS Im Ql , h(q,) --H(ql) =VEImQ, (5.1) 
t+a, 
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The mean gradients (~6,) and ( uU ) in the structure have the form 

(u,) o1 = Re cp (z,, + wlo) - Re dzo) = Re% 
(u,.h + (uy)H = Recp b,, + qd - Recp (z,) = ReQ, 

(5.2) 

We find expressions for Re St, and Re C2 2 in terms of lm ~2, and lm St,, wherein 

we take into account (1.10) and (1.11) ; thus, 

(5.3) 

We introduce a functional n, written in the form 

a = a, Im L?, -+ a2 Im Q, (5.4) 

Here a, is the functional a corresponding to the solution P (t) with lm B, = 1 and 

Im CL_, = 0. and a, is the functional a corresponding to P(t) for lrn Q2, = 1 and 

Im s2, = 0. 
If now we substitute the expressions (5.3) into the right-hand sides of Eqs. (5.2) and 

take into account the relations (5.1) and (5.4), we obtain the law relating mean flows 
and mean gradients in the structure, namely , 

cKx> = x11 <Q1) + %Aq?‘>r (U,) = x21 (41) + 3t22 (Q2) (5.5) 

Ii” x11 =- d h = K,,K2z - K’,z2 

When a, = a, = 0 (a homogeneous anisotropic medium), the law (5.5) reduces tothat 

given in (1.2). 
We call the coefficients of ( qi > in the law (5.5) macroscopic parameters of the 

structure and we refer to an homogeneo~ anisotropic medium with these parameters as 
a model medium. 

Theorem 5.1. The macroscopic parameters of a structure form a symmetric non- 

singular matrix K = 11 Xik 1. 
To prove this theorem we replace Re S& and Im Q, (v = 1,2) in the right member 

of Eq. (3.4) by their expressions from (5.1) and (5.2). Equation (3.3) can then be written 
in the form 

J = ---s(<P,)(uX) -t- (Qz) <U,>} (5.6) 

Introducing the standard solutions ufV), r+(v) and ujrl(“) (Y = ,1,2) in accord with the 

formuias 8.J = z&j (Ql> + u(2) ( qz) 

uj = Ujjclt (ql> + 14jfz) (9%) 

(5.7) 

ujq = UjP (41) + ujp <q2 > 
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and then substituting the latter into the left side of Eq. (3.3) we obtain (the meaning 
of Jik is clear from the text) 

t. k=l 

If we now differentiate (5.8) with respect to (qv) (Y = 1,X), we obtain the law (5.5). 
Its coefficient matrix x is obviously symmetric. Since the quadratic form on the left 
side of Eq. (5.8) is positive definite, we have det x + 0 . 

The following theorem summarizes the results of Sect. 5. 

Theorem 5. 2. For a regular piecewise-nonhomogeneous anisotropic structure with 
quasi-periodic flows Q there exists a model homogeneous anisotropic medium governed 
by the law (5.5) . 

6. Applicatlona Cl, 21. 
Potential flows in anisotropic porous media. Consider a plane-paral- 

lel potential flow of a liquid in a piecewise-homogeneous anisotropic porous medium 
whose cross section is a regular domain of the type of structure considered in Sect. 1. 

Upon requiring that the flow rate of the liquid across an arbitrary curve joining two con- 
gruent points z and z + o, (v=l, 2) of the medium be constant and be equal, respect- 

ively, to - v/ Im 9, and - 1/K Im Q,, we obtain the boundary -value problem (1.4) 
subject to the supplementary conditions (1.3). We interpret A+, K$, K$ (a, fi = 1, 2) 
as the filtration coefficients in the anisotropic components of the porous medium (rela- 
tion (1.2) is Darcy’s law for each component of the medium). We interpret L uj and 
r/j4 as the liquid pressure in the medium components I), Bj and dj,, respectively. The 

unknown functions (velocities and pressure in the liquid) are completely described by the 

relations (1.5), (1. lo), and by the system of integral equations (2.1). Theorem 5.2 as- 
sures us that for the piecewise-nonhomogeneous porous anisotropic medium in question 
there exists a model homogenous porous anisotropic medium governed by the Darcy law 

(5.5). 
Transverse thermal conductivity of reinforced anisotropic me- 

dia. Consider an anisotropic medium reinforced by congruent groups of heterogeneous 
anisotropic fibers (which can, in turn, be reinforced by heterogeneous fibers so that the 
cross section of such a medium is the type of structure described in Sect. 1) and suppose 
that the medium is permeated by a stationary thermal flow normal to the fiber axeswith 

the mean cell values ~9~) and (Q~). In this case we again have the boundary-value prob- 

lem (1.4),(1.3) for the temperature I(. uj and rcip in each medium component. The 

quantities K+, Khp, Ir’is (a, P = 1,2) are now to be interpreted as thermal conductivity 
coefficients of the corresponding components of the medium, and the relations (1.2) are 
to be interpreted as the law governing the thermal conductionin each component. Accor- 
ding to Theorem 5.2 the reinforced medium can be replaced by a homogeneous model 
medium governed by the law (5.5). 

Electrostatic field in anisotropic reinforced dielectrics. If an 
unbounded anisotropic piecewise-nonhomogeneous medium with a cross section of the 
type considered in Sect. 1 is penetrated by a transverse electrical field with the same 

mean vector intensity (E> = <qr) i (q2) in each fundamental cell, we again have 
the boundary-value problem (1.4) (1.3) for the field potential LL, uj, “j4 in the corre- 
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sponding media components. The quantities K,p, K$, Kt$ (a, f3 = 1, 2) arethen 
the dielectric permeabilities of the material in the corresponding components of the me- 

dium. The model homogeneous anisotropic medium corresponding to the structure is 

governed by the law (5.5) where KI1, K,,, K,, are the dielectric permeabilities of the 

matrix material. If the coupling media (or only some of them) are isotropic, then all our 

results remain valid. We need only set K1, = 0, KI1 = K,, = K for each corresponding 

domain. 
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An approximation of the homogeneity of a linear combination of the stressesand 

strains o + be = const is proposed to evaluate the correlation functions of the 
elastic field of micro-inhomogeneous media. This approximation is a generalis- 
ation of the Voigt and Reuss hypotheses according to which the strains e and the 
stresses o are considered homogeneous, respectively. Independence of the spatial 
fluctuations of the volume and shear components of the elastic field holds within 
the scope of the approximation made. It is shown that the proposed relationship 

is satisfied exactly for laminar materials, but approximately for fibrous and gran- 
ular materials. An explicit form is found for the tensor b in the singular appro- 

ximation of random function theory under the assumption of isotropy of the pro- 
perties of each of the fibrous and granular material phases and the correlation 
functions and stress and strain fields dispersions are calculated. It is shown that 

in this approximation the coordinate and tensor dependences of the correlation 
functions of the stress and strain fields are separated. An analogous computation 
is performed for multiphase polycrystals in the correlation approximation accord- 
ing to which correlation functions of elastic moduli of not higher than the second 

order are taken into account. In this approximation, the coordinate and tensor 
dependences of the correlation functions of the elastic field do not separate. Con- 
ditions are found under which the correlation approximation results in independ- 
ence of the volume and shear components of the elastic field fluctuations. 

The exact computation of the stress and strain fields is a complex problem for 

the deformation of micro-inhomogeneous media (composite materials, single- 


